Two‐step hybrid modeling for variable selection and estimation: An application to quantitative structure activity relationship study

Author:

Oranye Henrietta Ebele1ORCID,Ugwuowo Fidelis Ifeanyi1,Arum Kingsley Chinedu1ORCID

Affiliation:

1. Department of Statistics University of Nigeria Nsukka Nigeria

Abstract

AbstractIn this study, we developed a simple technique for effective parameter estimation and prediction of the quantitative structure activity relationship studies using a two‐step procedure. The first step is to choose the important molecular descriptors using the random forest regression, and the second step is to optimally predict the biological activity of the selected chemical compounds using the following estimators: ridge regression, jackknife ridge, Liu regression, jackknife Liu, Kibria–Lukman, and jackknife Kibria–Lukman. We conducted a simulation study and a real‐life analysis with a quantitative structure–activity relationship (QSAR) data with 2540 descriptors after preprocessing. The optimal prediction is determined using the cross‐validation error. The estimator with minimum cross‐validation error is considered best. It is obvious that performing jackknife estimation after random forest selection is preferred.

Publisher

Wiley

Subject

Applied Mathematics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3