Neuronal Cell-based Medicines from Pluripotent Stem Cells: Development, Production, and Preclinical Assessment

Author:

Sun Yun123,Feng Lin1245,Liang Lingmin1245,Stacey Glyn N.46,Wang Chaoqun12,Wang Yukai1234,Hu Baoyang1245ORCID

Affiliation:

1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology  Chinese Academy of Sciences, Beijing, People's Republic of China

2. Institute for Stem Cell and Regeneration  Chinese Academy of Sciences, Beijing, People's Republic of China

3. Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, People's Republic of China

4. National Stem Cell Resource Center  Chinese Academy of Sciences, Beijing, People's Republic of China

5. University of Chinese Academy of Sciences, Beijing, People's Republic of China

6. International Stem Cell Banking Initiative, Barley, Hertfordshire, UK

Abstract

Abstract Brain degeneration and damage is difficult to cure due to the limited endogenous repair capability of the central nervous system. Furthermore, drug development for treatment of diseases of the central nervous system remains a major challenge. However, it now appears that using human pluripotent stem cell-derived neural cells to replace degenerating cells provides a promising cell-based medicine for rejuvenation of brain function. Accordingly, a large number of studies have carried out preclinical assessments, which have involved different neural cell types in several neurological diseases. Recent advances in animal models identify the transplantation of neural derivatives from pluripotent stem cells as a promising path toward the clinical application of cell therapies [Stem Cells Transl Med 2019;8:681-693; Drug Discov Today 2019;24:992-999; Nat Med 2019;25:1045-1053]. Some groups are moving toward clinical testing in humans. However, the difficulty in selection of valuable critical quality criteria for cell products and the lack of functional assays that could indicate suitability for clinical effect continue to hinder neural cell-based medicine development [Biologicals 2019;59:68-71]. In this review, we summarize the current status of preclinical studies progress in this area and outline the biological characteristics of neural cells that have been used in new developing clinical studies. We also discuss the requirements for translation of stem cell-derived neural cells in examples of stem cell-based clinical therapy.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3