Ferulic Acid Promotes Bone Defect Repair After Radiation by Maintaining the Stemness of Skeletal Stem Cells

Author:

Liang Jia-Wu123,Li Pei-Lin12,Wang Qian123,Liao Song123,Hu Wei123,Zhao Zhi-Dong123,Li Zhi-Ling12,Yin Bo-Feng12,Mao Ning4,Ding Li15,Zhu HengORCID

Affiliation:

1. Beijing Key Laboratory for Radiobiology  Beijing Institute of Radiation Medicine, Beijing, People's Republic of China

2. Department of Experimental Hematology & Biochemistry  Beijing Institute of Radiation Medicine, Beijing, People's Republic of China

3. People's Liberation Army General Hospital, Beijing, People's Republic of China

4. Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China

5. Air Force Medical Center, PLA, Beijing, People's Republic of China

Abstract

Abstract The reconstruction of irradiated bone defects after settlement of skeletal tumors remains a significant challenge in clinical applications. In this study, we explored radiation-induced skeletal stem cell (SSC) stemness impairments and rescuing effects of ferulic acid (FA) on SSCs in vitro and in vivo. The immunophenotype, cell renewal, cell proliferation, and differentiation of SSCs in vitro after irradiation were investigated. Mechanistically, the changes in tissue regeneration-associated gene expression and MAPK pathway activation in irradiated SSCs were evaluated. The regenerative capacity of SSCs in the presence of FA in an irradiated bone defect mouse model was also investigated. We found that irradiation reduced CD140a- and CD105-positive cells in skeletal tissues and mouse-derived SSCs. Additionally, irradiation suppressed cell proliferation, colony formation, and osteogenic differentiation of SSCs. The RNA-Seq results showed that tissue regeneration-associated gene expression decreased, and the Western blotting results demonstrated the suppression of phosphorylated p38/MAPK and ERK/MAPK in irradiated SSCs. Notably, FA significantly rescued the radiation-induced impairment of SSCs by activating the p38/MAPK and ERK/MAPK pathways. Moreover, the results of imaging and pathological analyses demonstrated that FA enhanced the bone repair effects of SSCs in an irradiated bone defect mouse model substantially. Importantly, inhibition of the p38/MAPK and ERK/MAPK pathways in SSCs by specific chemical inhibitors partially abolished the promotive effect of FA on SSC-mediated bone regeneration. In summary, our findings reveal a novel function of FA in repairing irradiated bone defects by maintaining SSC stemness and suggest that the p38/MAPK and ERK/MAPK pathways contribute to SSC-mediated tissue regeneration postradiation.

Funder

Beijing Natural Sciences Foundation

National Natural Sciences Grants China

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3