Erythropoietin in bone homeostasis—Implications for efficacious anemia therapy

Author:

Lappin Katrina M.1,Mills Ken I.1,Lappin Terence R.1

Affiliation:

1. Patrick G Johnston Centre for Cancer Research Queen's University Belfast, Belfast, UK

Abstract

Abstract Bone homeostasis and hematopoiesis are irrevocably linked in the hypoxic environment of the bone marrow. Erythropoietin (Epo) regulates erythropoiesis by binding to its receptor, Epor, on erythroid progenitor cells. The continuous process of bone remodeling is achieved by the finely balanced activity of osteoblasts in bone synthesis and osteoclasts in bone resorption. Both osteoblasts and osteoclasts express functional Epors, but the underlying mechanism of Epo-Epor signaling in bone homeostasis is incompletely understood. Two recent publications have provided new insights into the contribution of endogenous Epo to bone homeostasis. Suresh et al examined Epo-Epor signaling in osteoblasts in bone formation in mice and Deshet-Unger et al investigated osteoclastogenesis arising from transdifferentiation of B cells. Both groups also studied bone loss in mice caused by exogenous human recombinant EPO-stimulated erythropoiesis. They found that either deletion of Epor in osteoblasts or conditional knockdown of Epor in B cells attenuates EPO-driven bone loss. These findings have direct clinical implications because patients on long-term treatment for anemia may have an increased risk of bone fractures. Phase 3 trials of small molecule inhibitors of the PHD enzymes (hypoxia inducible factor-prolyl hydroxylase inhibitors [HIF-PHIs]), such as Roxadustat, have shown improved iron metabolism and increased circulating Epo levels in a titratable manner, avoiding the supraphysiologic increases that often accompany intravenous EPO therapy. The new evidence presented by Suresh and Deshet-Unger and their colleagues on the effects of EPO-stimulated erythropoiesis on bone homeostasis seems likely to stimulate discussion on the relative merits and safety of EPO and HIF-PHIs.

Funder

Leukaemia UK

Leukaemia Lymphoma NI

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

Reference65 articles.

1. Biology of bone tissue: structure, function, and factors that influence bone cells;Florencio-Silva;Biomed Res Int,2015

2. Physiological bone remodeling: systemic regulation and growth factor involvement;Siddiqui;Phys Ther,2016

3. Bone formation and resorption as a requirement for marrow development;Patt;Proc Soc Exp Biol Med,1972

4. Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney;Lacombe;J Clin Invest,1988

5. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization;Koury;Blood,1988

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3