Affiliation:
1. Laboratory of Brewing Microbiology and Applied Enzymology School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education Jiangnan University Wuxi 214122 People's Republic of China
2. State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 People's Republic of China
3. International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology Jiangnan University Wuxi 214122 People's Republic of China
Abstract
AbstractShort‐chain dehydrogenases (SDRs) are powerful catalysts for the asymmetric reduction of prochiral ketones in pharmaceutical products. Herein, through gene mining and evolutionary analysis, we obtained two major types of SDRs (SDR‐1 and SDR‐2) for the enantioselective complementary reduction of N‐Boc‐piperidone, which gives the corresponding product (R)‐ or (S)‐N‐Boc‐piperidol, an intermediate of the interleukin inhibitor and lymphoma treatment drug (imbruvica), respectively. By integrating multiple sequence alignment, site‐directed mutagenesis and computational modeling, we proposed a “loop regulation” mechanism for the enantioselective control of SDRs, through which residues in the loop region could potentially fine‐tune their enantioselectivity. Further, site‐directed mutagenesis assays showed that two key residues (L201 and F205 for SDR‐1, F92 and H93 for SDR‐2) in the loop and its adjacent region played critical roles in fine‐tuning the enantioselectivity of SDRs. Understanding this mechanism of SDR stereo preference in catalyzing asymmetric reduction, we further switched the enantioselectivity of the homologous enzymes. The obtained enzymes catalyzed the enantiodivergent synthesis of chiral heterocyclic alcohols with different ring sizes and substituents (25–99% conversion and 25–99% ee (R/S)), including piperidols, 4‐hydroxy azepanes, 3‐hydroxy azepanes and pyrrolidinols. These findings could potentially guide future attempts at protein engineering of stereoselective SDRs.
Funder
Higher Education Discipline Innovation Project
Government of Jiangsu Province
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献