One‐Pot Production of Vanillin from Capsaicinoids through a Retrosynthetic Enzyme Cascade

Author:

Kim Hong‐Gon1,Jang Youngho1,Shin Jong‐Shik1ORCID

Affiliation:

1. Department of Biotechnology Yonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea

Abstract

AbstractVanillin is a key organoleptic component in vanilla, one of the most important natural flavors in the industry. The limited supply of natural vanilla, extracted from cured vanilla beans, elevates the commercial value of ‘natural’‐labeled vanillin, producible by microbial conversion of natural precursors such as ferulic acid, eugenol, isoeugenol, lignin, and glucose. However, cellular toxicity and undesirable overoxidation of vanillin remain challenges to the microbial methods. Here, we developed a one‐pot enzymatic conversion of capsaicinoids to vanillin by retracing the biosynthetic pathway found in Capsicum plants. The enzyme cascade consists of the hydrolysis of capsaicinoids by immobilized lipase B from Candida antarctica (CALB) and the oxidative deamination of the resulting vanillylamine by ω‐transaminase from Paracoccus denitrificans (PDTA). Process optimization of individual enzyme reactions was conducted on an analytical scale, enabling>95% reaction yield of vanillin from capsaicinoids in the one‐pot cascade reaction without undesirable accumulation of the oxidation byproduct and the inhibitory reaction intermediate, i. e., vanillic acid and vanillylamine, respectively. To verify practical applicability, we performed a preparative‐scale reaction starting with 1.75 g capsaicinoids and 2.75 g sodium pyruvate at 10 mg/mL CALB and 3 μM PDTA, leading to an 81% reaction yield and a 57% isolation yield. This study is, to the best of our knowledge, the first demonstration of one‐pot production of vanillin from capsaicinoids, which might pave the way for cost‐effective and sustainable access to natural‐labeled vanillin from a renewable feedstock readily available from Capsicum fruits.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3