A smart surveillance system utilizing modified federated machine learning: Gossip‐verifiable and quantum‐safe approach

Author:

Dharani Dharmaraj1ORCID,Anitha Kumari Kumarasamy1ORCID

Affiliation:

1. Department of IT PSG College of Technology Coimbatore India

Abstract

SummaryEdge computing has the capability to process data closer to its point of origin, leading to the development of critical autonomous infrastructures with frequently communicating peers. The proposed work aims to evaluate the effectiveness of security and privacy mechanisms tailored for distributed systems, particularly focusing on scenarios where the nodes are closed‐circuit television (CCTV) systems. Ensuring public safety, object tracking in surveillance systems is a vital responsibility. The workflow has been specifically crafted and simulated for the purpose of weapon detection within public CCTV systems, utilizing sample edge devices. The system's primary objective is to detect any unauthorized use of weapons in public spaces while concurrently ensuring the integrity of video footage for use in criminal investigations. The outcomes of prior research on distributed machine learning (DML) techniques are compared with modified federated machine learning (FML) techniques, specifically designed for being Gossip verifiable and Quantum Safe. The conventional federated averaging algorithm is modified by incorporating the secret sharing principle, coupled with code‐based McEliece cryptosystem. This adaptation is designed to fortify the system against quantum threats. The Gossip data dissemination protocol, executed via custom blockchain atop the distributed network, serves to authenticate and validate the learning model propagated among the peers in the network. It provides additional layer of integrity to the system. Potential threats to the proposed model are analyzed and the efficiency of the work is assessed using formal proofs. The outcomes of the proposed work demonstrate that the trustworthiness and consistency are meticulously preserved for both the model and data within the DML framework on the Edge computing platform.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3