Rapid Fluorescence Assay for Polyphosphate in Yeast Extracts Using JC‐D7

Author:

Deitert Alexander1ORCID,Fees Jana1ORCID,Mertens Anna1ORCID,Nguyen Van Duc2,Maares Maria2ORCID,Haase Hajo2ORCID,Blank Lars Mathias1ORCID,Keil Claudia2ORCID

Affiliation:

1. Institute of Applied Microbiology—iAMB, Aachen Biology and Biotechnology—ABBt RWTH Aachen University Aachen Germany

2. Department of Food Chemistry and Toxicology, Institute of Food Technology and Food Chemistry Technische Universität Berlin Berlin Germany

Abstract

ABSTRACTPolyphosphate (polyP) is an intriguing molecule that is found in almost any organism, covering a multitude of cellular functions. In industry, polyP is used due to its unique physiochemical properties, including pH buffering, water binding, and bacteriostatic activities. Despite the importance of polyP, its analytics is still challenging, with the gold standard being 31P NMR. Here, we present a simple staining method using the fluorescent dye JC‐D7 for the semi‐quantitative polyP evaluation in yeast extracts. Notably, fluorescence response was affected by polyP concentration and polymer chain length in the 0.5–500 µg/mL polyP concentration range. Hence, for polyP samples of unknown chain compositions, JC‐D7 cannot be used for absolute quantification. Fluorescence of JC‐D7 was unaffected by inorganic phosphate up to 50 mM. Trace elements (FeSO4 > CuSO4 > CoCl2 > ZnSO4) and toxic mineral salts (PbNO3 and HgCl2) diminished polyP–induced JC‐D7 fluorescence, affecting its applicability to samples containing polyP–metal complexes. The fluorescence was only marginally affected by other parameters, such as pH and temperature. After validation, this simple assay was used to elucidate the degree of polyP production by yeast strains carrying gene deletions in (poly)phosphate homeostasis. The results suggest that staining with JC‐D7 provides a robust and sensitive method for detecting polyP in yeast extracts and likely in extracts of other microbes. The simplicity of the assay enables high‐throughput screening of microbes to fully elucidate and potentially enhance biotechnological polyP production, ultimately contributing to a sustainable phosphorus utilization.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3