Pragmatic seismic collapse meso‐scale analysis of old Dutch masonry churches

Author:

Davis Lucy1ORCID,Cogliano Martina2,Casotto Chiara2,Grecchi Giulia2,Ozcebe Sevgi2,Tsioli Chrysanthi2,Malomo Daniele1ORCID

Affiliation:

1. Department of Civil Engineering McGill University Montréal Québec Canada

2. Studio Calvi Ltd. Pavia Lombardy Italy

Abstract

AbstractThe demand for advanced nonlinear time‐history and seismic collapse simulations of old unreinforced masonry (URM) constructions to support informed risk evaluation and mitigation plans is rapidly increasing in the structural engineering profession. On one hand, offering cutting‐edge solutions based on the latest advances is challenging for practitioners, given the reduced timeframe usually available for projects and the specialized knowledge required. On the other hand, researchers frequently face difficulties in accessing old buildings and gathering key data required in complex numerical collapse analysis strategies. In this work, a pragmatic approach for evaluation of the earthquake collapse response of vulnerable old URM churches typical of the Northern Netherlands, now exposed to low‐magnitude induced seismicity due to gas extraction, is presented. To bridge the gap between academic and industry applications, an integrated framework is proposed that combines archival and onsite research, code‐based prescriptions, geometrical characterization and simplified discrete element modeling. Main outcomes include the identification of recurrent damage patterns for five old URM churches erected during the 11th, 13th, 14th, and 19th centuries, representative of key traditional multi‐leaf and cavity‐wall structural types, as well as relevant failure mechanisms and collapsed debris distributions for seismic signals of varying intensities. Produced results constitute a solid foundation of data on which to base the design of ad‐hoc retrofits and development of tailored risk assessment models. This study opens a new line of inquiry while discussing practical challenges and research questions which arose, to be of interest to both applied researchers and structural engineering professionals.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3