Electrospun multi‐chamber core–shell nanofibers and their controlled release behaviors: A review

Author:

Liu Yubo1,Chen Xiaohong23,Lin Xiangde1,Yan Jiayong1,Yu Deng‐Guang23ORCID,Liu Ping23ORCID,Yang Hui1

Affiliation:

1. Shanghai University of Medicine & Health Sciences Shanghai China

2. School of Materials and Chemistry University of Shanghai for Science & Technology Shanghai China

3. Shanghai Engineering Technology Research Center for High‐Performance Medical Device Materials Shanghai China

Abstract

AbstractCore–shell structure is a concentric circle structure found in nature. The rapid development of electrospinning technology provides more approaches for the production of core–shell nanofibers. The nanoscale effects and expansive specific surface area of core–shell nanofibers can facilitate the dissolution of drugs. By employing ingenious structural designs and judicious polymer selection, specialized nanofiber drug delivery systems can be prepared to achieve controlled drug release. The synergistic combination of core–shell structure and materials exhibits a strong strategy for enhancing the drug utilization efficiency and customizing the release profile of drugs. Consequently, multi‐chamber core–shell nanofibers hold great promise for highly efficient disease treatment. However, little attention concentration is focused on the effect of multi‐chamber core–shell nanofibers on controlled release of drugs. In this review, we introduced different fabrication techniques for multi‐chamber core–shell nanostructures, including advanced electrospinning technologies and surface functionalization. Subsequently, we reviewed the different controlled drug release behaviors of multi‐chamber core–shell nanofibers and their potential needs for disease treatment. The comprehensive elucidation of controlled release behaviors based on electrospun multi‐chamber core–shell nanostructures could inspire the exploration of novel controlled delivery systems. Furthermore, once these fibers with customizable drug release profiles move toward industrial mass production, they will potentially promote the development of pharmacy and the treatment of various diseases.This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3