Beneficial impact of lithium bis(oxalato)borate as electrolyte additive for high‐voltage nickel‐rich lithium‐battery cathodes

Author:

Wu Fanglin12,Mullaliu Angelo123,Diemant Thomas12,Stepien Dominik12,Parac‐Vogt Tatjana N.3,Kim Jae‐Kwang4,Bresser Dominic12,Kim Guk‐Tae124,Passerini Stefano125ORCID

Affiliation:

1. Helmholtz Institute Ulm (HIU) Ulm Germany

2. Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

3. Department of Chemistry KU Leuven Leuven Belgium

4. Department of Energy Convergence Engineering Cheongju University Cheongju Republic of Korea

5. Chemistry Department Sapienza University of Rome Rome Italy

Abstract

AbstractHigh‐voltage nickel‐rich layered cathodes possess the requisite, such as excellent discharge capacity and high energy density, to realize lithium batteries with higher energy density. However, such materials suffer from structural and interfacial instability at high voltages (>4.3 V). To reinforce the stability of these cathode materials at elevated voltages, lithium borate salts are investigated as electrolyte additives to generate a superior cathode‐electrolyte interphase. Specifically, the use of lithium bis(oxalato)borate (LiBOB) leads to an enhanced cycling stability with a capacity retention of 81.7%. Importantly, almost no voltage hysteresis is detected after 200 cycles at 1C. This outstanding electrochemical performance is attributed to an enhanced structural and interfacial stability, which is attained by suppressing the generation of micro‐cracks and the superficial structural degradation upon cycling. The improved stability stems from the formation of a fortified borate‐containing interphase which protects the highly reactive cathode from parasitic reactions with the electrolyte. Finally, the decomposition process of LiBOB and the possible adsorption routes to the cathode surface are deduced and elucidated.image

Funder

China Scholarship Council

European Commission

National Research Foundation of Korea

Publisher

Wiley

Subject

Materials Chemistry,Surfaces, Coatings and Films,Materials Science (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3