Detection of slow‐moving landslides through automated monitoring of surface deformation using Sentinel‐2 satellite imagery

Author:

Van Wyk de Vries Maximillian123ORCID,Arrell Katherine4,Basyal Gopi K.5,Densmore Alexander L.6ORCID,Dunant Alexandre6,Harvey Erin L.6,Jimee Ganesh K.5,Kincey Mark E.7ORCID,Li Sihan8,Singh Pujara Dammar5,Shrestha Ram5,Rosser Nick J.6,Dadson Simon J.1

Affiliation:

1. School of Geography and the Environment University of Oxford Oxford UK

2. Department of Geography University of Cambridge Cambridge UK

3. Department of Earth Sciences University of Cambridge Cambridge UK

4. Geography and Environmental Sciences Northumbria University Newcastle upon Tyne UK

5. National Society for Earthquake Technology Lalitpur Nepal

6. Department of Geography Durham University Durham UK

7. School of Geography, Politics & Sociology Newcastle University Newcastle upon Tyne UK

8. Department of Geography University of Sheffield Sheffield UK

Abstract

AbstractLandslides are one of the most damaging natural hazards and have killed tens of thousands of people around the world over the past decade. Slow‐moving landslides, with surface velocities on the order of 10−2–102 m a−1, can damage buildings and infrastructure and be precursors to catastrophic collapses. However, due to their slow rates of deformation and at times subtle geomorphic signatures, they are often overlooked in local and large‐scale hazard inventories. Here, we present a remote‐sensing workflow to automatically map slow‐moving landslides using feature tracking of freely and globally available optical satellite imagery. We evaluate this proof‐of‐concept workflow through three case studies from different environments: the extensively instrumented Slumgullion landslide in the United States, an unstable lateral moraine in Chilean Patagonia and a high‐relief landscape in central Nepal. This workflow is able to delineate known landslides and identify previously unknown areas of hillslope deformation, which we consider as candidate slow‐moving landslides. Improved mapping of the spatial distribution, character and surface displacement rates of slow‐moving landslides will improve our understanding of their role in the multi‐hazard chain and their sensitivity to climatic changes and can direct future detailed localised investigations into their dynamics.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3