Watersheds and stream networks viewed longitudinally: Example insights from novel spatial portrayals of watershed characteristics

Author:

Raulerson Scott1ORCID,Sytsma Caleb1,Webster Jackson R.2,Jackson C. Rhett1

Affiliation:

1. Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia USA

2. Department of Biological Sciences Virginia Tech Blacksburg Virginia USA

Abstract

AbstractLongitudinal depictions of watershed structure and characteristics, including topography, stream networks, wetlands, ground water levels, and land use, can provide watershed knowledge and understanding unavailable from standard plan view maps. Three case studies provide examples of knowledge gained by applying longitudinal views of stream networks, watershed hydrologic behavior, and land use distributions. Longitudinal views of mountain stream networks show extreme variability in the slope‐area relationships of low Strahler order streams, large discontinuities in drainage area (large parts of drainage area space are absent in networks), and large variations in network curvature. Longitudinal views of a groundwater‐dominated headwater watershed increase the inference available from limited groundwater observations and clearly reveal how groundwater connections affect the permanence of surface water features and the distribution of vadose zone storage in the landscape. Plotting land uses longitudinally illuminates and allows a quantitative analysis of how land uses are distributed relative to topographic position. Viewing watersheds and stream networks longitudinally can provide new insights into watershed forms and processes and motivate new questions and research.

Funder

Bioenergy Technologies Office

National Institute of Food and Agriculture

National Science Foundation

Savannah River Operations Office, U.S. Department of Energy

U.S. Department of Agriculture

U.S. Department of Energy

U.S. Forest Service

Publisher

Wiley

Subject

General Environmental Science,Water Science and Technology,Environmental Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3