On the number of maximal independent sets: From Moon–Moser to Hujter–Tuza

Author:

Palmer Cory1ORCID,Patkós Balázs2ORCID

Affiliation:

1. Department of Mathematical Sciences University of Montana Missoula Montana USA

2. Department of Combinatorics and its Applications Alfréd Rényi Institute of Mathematics Budapest Hungary

Abstract

AbstractWe connect two classical results in extremal graph theory concerning the number of maximal independent sets. The maximum number of maximal independent sets in an ‐vertex graph was determined by Miller and Muller and independently by Moon and Moser. The maximum number of maximal independent sets in an ‐vertex triangle‐free graph was determined by Hujter and Tuza. We give a common generalization of these results by determining the maximum number of maximal independent sets in an ‐vertex graph containing no induced triangle matching of size . This also improves a stability result of Kahn and Park on . Our second result is a new (short) proof of a second stability result of Kahn and Park on the maximum number of maximal independent sets in ‐vertex triangle‐free graphs containing no induced matching of size .

Funder

Simons Foundation

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

Wiley

Subject

Geometry and Topology,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3