Ensemble based methods for leapfrog integration in the simplified parameterizations, primitive‐equation dynamics model

Author:

Nino‐Ruiz Elias D.1ORCID,Consuegra Ortega Randy S.2,Lucini Magdalena2

Affiliation:

1. Applied Math and Computer Science Lab Department of Systems Engineering Universidad del Norte Barranquilla Colombia

2. Department of Mathematics FaCENA‐UNNE Corrientes Argentina

Abstract

AbstractThis paper presents efficient and practical implementations of sequential data assimilation methods for the Simplified Parameterizations, primitive‐Equation DYnamics (SPEEDY) Model, a well‐known numerical model, into the data assimilation community for climate prediction. In the SPEEDY model, the time evolution of dynamics is performed via the second‐order Leapfrog integration scheme; this time integrator relies on two steps: the position and the velocity. The computational implementation of SPEEDY blends the time integrator and the spatial discretization of dynamics to accelerate algebraic computations. Thus, there is no access to the right‐hand side function of the ordinary differential equations governing the time evolution of model dynamics. Consequently, the SPEEDY model is often treated as a black box wherein positions and velocities work as inputs and outputs. Since observations in operational data assimilation only match position states, we can exploit augmented vector states to propagate analysis innovations from positions to velocities. For this purpose, we formulate three variants of ensemble‐based filters and perform numerical experiments to assess their accuracies. We consider two scenarios for the experiments: an ideal case wherein positions and velocities can be observed and a more realistic one wherein measurements are only accessible for position states. Besides, we discuss the effects of the ensemble size on the accuracies of our formulations and, even more, the typical case in which velocities are not updated across assimilation steps. The results reveal that all filter formulations' accuracies remain the same in terms of Root‐Mean‐Square‐Error by neglecting observations from velocities (a realistic scenario) even for cases wherein the number of measurements decreases to 6% of model components. Furthermore, for all discussed filter implementations, the propagation of analysis increments from position to velocities improves up to 100% the performance of filter implementations wherein velocities are not updated, a typical operational scenario.

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3