Challenges in surface‐enhanced Raman scattering signal for ethephon detection: Theoretical and experimental approaches

Author:

Bianchi‐Carvalho Isabela1ORCID,Martin Cibely S.2ORCID,Alves Gabriel G. B.3,Silva Jaqueline N.1,Batagin‐Neto Augusto4ORCID,Constantino Carlos J. L.1

Affiliation:

1. School of Technology and Sciences São Paulo State University (UNESP) Presidente Prudente SP Brazil

2. School of Engineering São Paulo State University (UNESP) Ilha Solteira SP Brazil

3. School of Sciences, POSMAT São Paulo State University (UNESP) Bauru SP Brazil

4. Institute of Sciences and Engineering São Paulo State University (UNESP) Itapeva SP Brazil

Abstract

AbstractEthephon, a widely used growth regulator in fruits and vegetables, requires careful monitoring because of its toxicity. However, as far as we know, only two works are found in the literature regarding surface‐enhanced Raman scattering (SERS) ethephon detection. Indeed, obtaining the SERS signal revealed to be challenging. Therefore, we have evaluated the SERS signal of ethephon using theoretical (as density functional theory and charge‐assisted fragment interaction) and experimental approaches, addressing this limited literature knowledge. Theoretical Raman spectra with Ag or Au atoms at reactive sites exhibited enhanced ethephon SERS signal via AgCl bonding, consistent with the experimental data. Multiple experimental procedures were employed to obtain the SERS signal, including pH variations, salt addition, excitation laser lines, time dependency, and different SERS substrates (Ag colloid and Ag island films). Salt addition (NaCl) improved SERS signal, correlating with Ag colloid aggregation. Analysis in Ag colloid showed the pH 7.0 as optimal for ethephon detection, using freshly prepared Ag colloid + ethephon dispersion with ethephon powder being directly dissolved into Ag colloid. Only the AgCl band intensity improved with time. Ag colloid (wet medium — 633 nm laser line) outperformed Ag island films (dry medium — 785 nm laser line).

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Wiley

Subject

Spectroscopy,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3