Selection of number of clusters and warping penalty in clustering functional electrocardiogram

Author:

Yang Wei1,Feldman Harold I.1,Guo Wensheng1

Affiliation:

1. Department of Biostatistics, Epidemiology and Informatics University of Pennsylvania Perelman School of Medicine Philadelphia Pennsylvania USA

Abstract

Clustering functional data aims to identify unique functional patterns in the entire domain, but this can be challenging due to phase variability that distorts the observed patterns. Curve registration can be used to remove this variability, but determining the appropriate level of warping flexibility can be complicated. Curve registration also requires a target to which a functional object is aligned, typically the cross‐sectional mean of functional objects within the same cluster. However, this mean is unknown prior to clustering. Furthermore, there is a trade‐off between flexible warping and the number of resulting clusters. Removing more phase variability through curve registration can lead to fewer remaining variations in the functional data, resulting in a smaller number of clusters. Thus, the optimal number of clusters and warping flexibility cannot be uniquely identified. We propose to use external information to solve the identification issue. We define a cross validated Kullback‐Leibler information criterion to select the number of clusters and the warping penalty. The criterion is derived from the predictive classification likelihood considering the joint distribution of both the functional data and external variable and penalizes the uncertainty in the cluster membership. We evaluate our method through simulation and apply it to electrocardiographic data collected in the Chronic Renal Insufficiency Cohort study. We identify two distinct clusters of electrocardiogram (ECG) profiles, with the second cluster exhibiting ST segment depression, an indication of cardiac ischemia, compared to the normal ECG profiles in the first cluster.

Funder

National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3