The effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed tendon

Author:

Li Xianhua12ORCID,Jiang Fangxin12,Zhang Xue3,Li Peixun4,Chen Shangzhi12,Sun Yue12

Affiliation:

1. China Academy of Building Research Beijing China

2. China Building Technique Group Co. Ltd Beijing China

3. Dalian University of Technology Dalian China

4. Broad Vision Technology and Materials Ltd Beijing China

Abstract

AbstractThe effect of curing temperature on hardening, thermal, and mechanical characteristics of adhesive for retard‐bonded prestressed systems is investigated in detail. To evaluate the degree of hardening of the adhesive, the cone penetration and Shore hardness of two samples are tested throughout the curing process under conditions of 25, 35, 45, 55, and 65°C. The thermal performance and curing reaction are characterized using differential scanning calorimetry and Fourier transform infrared spectroscopy, respectively. The mechanical properties with respect to the cure temperatures are characterized by compression strength tests. Experimental results present that after curing under conditions ranging from 25 to 65°C, the hardness of the samples reached its maximum values (85–90 D). As the temperature increased from 25 to 65°C, there was a greater degree of curing cross‐linking, resulting in an increase in compressive strength from 55 to 72 MPa. Based on Shore hardness–time experimental data, a logarithmic model is proposed for predicting the hardness of adhesives at any given time for engineering applications. Additionally, the time–temperature superposition principle is utilized to extrapolate the curing time of the adhesive under low‐temperature conditions. The research findings are of significant importance for the assessment of adhesive hardening.

Funder

U.S. Department of Housing and Urban Development

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3