Cell Cycle-Coupled Changes in the Level of Reactive Oxygen Species Support the Proliferation of Human Pluripotent Stem Cells

Author:

Ivanova Julia S.1ORCID,Pugovkina Natalia A.1ORCID,Neganova Irina E.1ORCID,Kozhukharova Irina V.1ORCID,Nikolsky Nikolay N.1ORCID,Lyublinskaya Olga G.1ORCID

Affiliation:

1. Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia

Abstract

Abstract The study of proliferation regulation in human pluripotent stem cells is crucial to gain insights into understanding the physiology of these cells. However, redox regulation of the pluripotent cell cycle remains largely unexplored. Here, using human embryonic stem cells (hESCs) as well as human induced pluripotent stem cells (hiPSCs), we demonstrate that the level of reactive oxygen species (ROS) in pluripotent cells oscillates in accordance with the cell cycle progression with the peak occurring at transition from S to G2/M phase of the cycle. A decrease of this level by antioxidants leads to hindered S-phase initiation and progression but does not affect the early-G1-phase or mitosis. Cells exposed to antioxidants in the early-G1-phase accumulate the phosphorylated retinoblastoma protein and overcome the restriction point but are unable to accumulate the main regulators of the S phase—CYCLIN A and GEMININ. Based on the previous findings that CYCLIN A stability is affected by redox homeostasis disturbances in somatic cells, we compared the responses to antioxidant treatments in hESCs and in their differentiated fibroblast-like progeny cells (difESCs). In difESCs, similar to hESCs, a decrease in ROS level results in the disruption of S-phase initiation accompanied by a deficiency of the CYCLIN A level. Moreover, in antioxidant-treated cells, we revealed the accumulation of DNA breaks, which was accompanied by activation of the apoptosis program in pluripotent cells. Thus, we conclude that maintaining the physiological ROS level is essential for promotion of proliferation and accurate DNA synthesis in pluripotent cells and their differentiated descendants.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Foundation for Basic Research

Ministry of Science and Higher Education

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3