The role of alternative splicing and splicing factors in diabetes: Current status and future perspectives

Author:

Singha Didhiti1,Mondal Meghna1,Ghosh Dhruba1,Choudhury Debopriya1,Chakravarti Bandana2,Kar Rajesh Kumar3,Malakar Pushkar1ORCID

Affiliation:

1. Department of Biomedical Science and Technology, School of Biological Sciences Ramakrishna Mission Vivekananda Educational and Research Institute (RKMVERI) Kolkata India

2. Department of Endocrinology Sanjay Gandhi Postgraduate Institute of Medical Sciences Lucknow India

3. Department of Neurosurgery, School of Medicine Yale University New Haven Connecticut USA

Abstract

AbstractWith glucose being at the center of energy consumption and production, maintaining homeostasis of this simple sugar is of pivotal importance. Loss of glucose homeostasis results in altered blood glucose levels, that are frequently observed in type 2 diabetes (T2D) and obesity. T2D and obesity share pathophysiological mechanisms and genetic backgrounds. These conditions collectively impact over 500 million individuals worldwide, necessitating a deeper mechanistic understanding for effective therapeutic strategies. Recent studies have highlighted the involvement of abnormal alternative splicing (AS) and changes in splicing factors (SFs) in the development and progression of diabetic conditions, presenting AS and SFs as promising targets for therapy. This review focuses on the deregulation of AS (INSR, TCF7L2, and mTOR) and SF (Sam68) deregulation in diabetic conditions. In addition, we discuss the importance of mTOR signaling in diabetic conditions and its regulation by AS and SFs. Furthermore, we discuss current strategies aimed at targeting AS and SFs. Finally, we discuss research challenges, and unresolved questions in the field, and offer recommendations to enhance our comprehension of the significance of AS and SFs in the context of diabetes and obesity.This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease

Funder

Science and Engineering Research Board

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3