Affiliation:
1. College of Fisheries Guangdong Ocean University Zhanjiang China
2. Guangdong Laboratory of Southern Ocean Science and Engineering Zhanjiang China
Abstract
AbstractAgainst the backdrop of global warming, marine heatwaves are projected to become increasingly intense and frequent. This trend poses a potential threat to the survival of corals and the maintenance of entire coral reef ecosystems. Despite extensive evidence for the resilience of corals to heat stress, their ability to withstand repeated heatwave events has not been determined. In this study, we examined the responses and resilience of Turbinaria peltata to repeated exposure to marine heatwaves, with a focus on physiological parameters and symbiotic microorganisms. In the first heatwave, from a physiological perspective, T. peltata showed decreases in the Chl a content and endosymbiont density and significant increases in GST, caspase‐3, CAT, and SOD levels (p < .05), while the effects of repeated exposure on heatwaves were weaker than those of the initial exposure. In terms of bacteria, the abundance of Leptospira, with the potential for pathogenicity and intracellular parasitism, increased significantly during the initial exposure. Beneficial bacteria, such as Achromobacter arsenitoxydans and Halomonas desiderata increased significantly during re‐exposure to the heatwave. Overall, these results indicate that T. peltata might adapt to marine heatwaves through physiological regulation and microbial community alterations.
Funder
National Key Research and Development Program of China
Basic and Applied Basic Research Foundation of Guangdong Province