Expansion and contraction of lake basin shape the genetic structure of Sinocyclocheilus (Osteichthyes: Cypriniformes: Cyprinidae) populations in Central Yunnan, China

Author:

Che Xing‐Jin123ORCID,Zhang Yuan‐Wei12,Wu An‐Li12,Pan Xiao‐Fu12,Wang Mo4,Yang Jun‐Xing12,Wang Xiao‐Ai12

Affiliation:

1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology The Innovative Academy of Seed Design, Chinese Academy of Sciences Kunming China

2. Yunnan Key Laboratory of Plateau Fish Breeding Yunnan Engineering Research Center for Plateau‐Lake Health and Restoration, Kunming Institute of Zoology, Chinese Academy of Sciences Kunming China

3. University of Chinese Academy of Sciences Beijing China

4. Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Faculty of Biodiversity Conservation Southwest Forestry University Kunming China

Abstract

AbstractGeological events can strongly affect the genetic structures and differentiation of fish populations. Especially, as an endemic fish of the genus Sinocyclocheilus in the Yunnan‐Guizhou Plateau, the effects of key geological events on the distributions and genetic structures remain poorly understood. Examining the phylogeographic patterns of Sinocyclocheilus fishes can be useful for elucidating the spatio‐temporal dynamics of their population size, dispersal history and extent of geographical isolation, thereby providing a theoretical basis for their protection. Here, we used single nucleotide polymorphisms (SNP) method to investigate the phylogeographic patterns of Sinocyclocheilus fishes. Our analysis supports the endemicity of Sinocyclocheilus, but the samples of different regions of Sinocyclocheilus contain multiple ancestral components, which displayed more admixed and diversified genetic components, this may be due to the polymorphism of the ancestors themselves, or gene infiltration caused by hybridization between adjacent species of Sinocyclocheilus. We estimate that the most recent common ancestor (MRCA) of Sinocyclocheilus fish in the Central Yunnan Basin at approximately 3.75~3.11 Ma, and infer that the evolution of Sinocyclocheilus in the central Yunnan Basin is closely related to the formation of plateau lakes (around 4.0~0.02 Ma), and identifies the formation of Dianchi Lake and Fuxian Lake as key geological events shaping Sinocyclocheilus population structure. It is also the first time to prove that the altitude change has a great influence on the genetic variation among the populations of Sinocyclocheilus.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3