Lesser prairie‐chicken dispersal after translocation: Implications for restoration and population connectivity

Author:

Berigan Liam A.1ORCID,Aulicky Carly S. H.1,Teige Elisabeth C.1,Sullins Daniel S.1,Fricke Kent A.2,Reitz Jonathan H.3,Rossi Liza G.4,Schultz Kraig A.5,Rice Mindy B.6,Tanner Evan7ORCID,Fuhlendorf Samuel D.8,Haukos David A.9

Affiliation:

1. Kansas Cooperative Fish and Wildlife Research Unit, Division of Biology Kansas State University Manhattan Kansas USA

2. Kansas Department of Wildlife and Parks Emporia Kansas USA

3. Colorado Parks and Wildlife Lamar Colorado USA

4. Colorado Parks and Wildlife Steamboat Springs Colorado USA

5. Kansas Department of Wildlife and Parks Elkhart Kansas USA

6. U.S. Fish and Wildlife Service, National Wildlife Refuge System Fort Collins Colorado USA

7. Department of Rangeland and Wildlife Sciences, Caesar Kleberg Wildlife Research Institute Texas A&M University Kingsville Texas USA

8. Natural Resource Ecology & Management Oklahoma State University Stillwater Oklahoma USA

9. U.S. Geological Survey, Kansas Cooperative Fish and Wildlife Research Unit Kansas State University Manhattan Kansas USA

Abstract

AbstractConservation translocations are frequently inhibited by extensive dispersal after release, which can expose animals to dispersal‐related mortality or Allee effects due to a lack of nearby conspecifics. However, translocation‐induced dispersals also provide opportunities to study how animals move across a novel landscape, and how their movements are influenced by landscape configuration and anthropogenic features. Translocation among populations is considered a potential conservation strategy for lesser prairie‐chickens (Tympanuchus pallidicinctus). We determined the influence of release area on dispersal frequency by translocated lesser prairie‐chickens and measured how lesser prairie‐chickens move through grassland landscapes through avoidance of anthropogenic features during their dispersal movements. We translocated 411 lesser prairie‐chickens from northwest Kansas to southeastern Colorado and southwestern Kansas in 2016–2019. We used satellite GPS transmitters to track 115 lesser prairie‐chickens throughout their post‐release dispersal movements. We found that almost all lesser prairie‐chickens that survived from their spring release date until June undergo post‐translocation dispersal, and there was little variation in dispersal frequency by release area (96% of all tracked birds, 100% in Baca County, Colorado, 94% in Morton County, Kansas, n = 55). Dispersal movements (male: 103 ± 73 km, female: 175 ± 108 km, n = 62) led to diffusion across landscapes, with 69% of birds settling >5 km from their release site. During dispersal movements, translocated lesser prairie‐chickens usually travel by a single 3.75 ± 4.95 km dispersal flight per day, selecting for steps that end far from roads and in Conservation Reserve Program (CRP) grasslands. Due to this “stepping stone” method of transit, landscape connectivity is optimized when <5 km separates grassland patches on the landscape. Future persistence of lesser prairie‐chicken populations can be aided through conservation of habitat and strategic placement of CRP to maximize habitat connectivity. Dispersal rates suggest that translocation is better suited to objectives for regional, rather than site‐specific, population augmentation for this species.

Funder

Kansas State University

U.S. Fish and Wildlife Service

Kansas Department of Wildlife and Parks

Colorado Parks and Wildlife

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3