Single‐Exosome Counting and 3D, Subdiffraction Limit Localization Using Dynamic Plasmonic Nanoaperture Label‐Free Imaging

Author:

Mallick Mohammad Sadman1ORCID,Misbah Ibrahim1,Ohannesian Nareg1,Shih Wei-Chuan1234ORCID

Affiliation:

1. Department of Electrical and Computer Engineering University of Houston 4800 Calhoun Road Houston TX 77204 USA

2. Department of Biomedical Engineering University of Houston 4800 Calhoun Road Houston TX 77204 USA

3. Department of Chemistry University of Houston 4800 Calhoun Road Houston TX 77204 USA

4. Program of Materials Science and Engineering University of Houston 4800 Calhoun Road Houston TX 77204 USA

Abstract

Blood‐circulating exosomes as a disease biomarker have great potential in clinical applications as they contain molecular information about their parental cells. However, label‐free characterization of exosomes is challenging due to their small size. Without labeling, exosomes are virtually indistinguishable from other entities of similar size. Over recent years, several techniques have been developed to overcome the existing challenges. This article demonstrates a new label‐free approach based on dynamic PlAsmonic NanO‐apeRture lAbel‐free iMAging (D‐PANORAMA), a bright‐field technique implemented on arrayed gold nanodisks on invisible substrates (AGNIS). PANORAMA provides high surface sensitivity and has been shown to count single 25 nm polystyrene beads previously. Herein, it is shown that using the dynamic imaging mode, D‐PANORAMA can yield 3D, subdiffraction limited localization of individual 25 nm beads. Furthermore, D‐PANORAMA's capability to size, count, and localize the 3D, subdiffraction limited position of individual exosomes is demonstrated as they bind to the AGNIS surface. The importance of both the in‐plane and out‐of‐plane localization, which exploit the synergy of 2D imaging and the intensity contrast, is emphasized.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3