A Dual‐Function Electrospun Matrix for the Prevention of Herpes Simplex Virus‐1 Infections after Corneal Transplantation

Author:

Rohde Felix1ORCID,Walther Marcel1ORCID,Baur Florentin1,Windbergs Maike1ORCID

Affiliation:

1. Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany

Abstract

Tissue transplantations are often associated with severe infections. Cornea replacement as the most frequent transplantation worldwide bears the risk of keratitis caused by herpes simplex virus (HSV), posing a severe and sight‐threatening complication. To overcome the current lack of effective HSV therapy in the eye, biodegradable nanofibrous scaffolds incorporating acyclovir (ACV) intended for transplantation along with the cornea graft to prevent viral infections are designed. The rational development of these matrices reveals the strong dependency of the surface wettability on the release kinetics of the tested biocompatible poly(lactic‐co‐glycolic acid) (PLGA) polymers. Using a mixture of two PLGA polymers, a tailor‐made release of the antiviral active ACV is achieved for the intended treatment period. In a human in vitro HSV infection model, a synergistic viral inhibition mechanism by binding the virus particles on the fibers surface, while simultaneously releasing the antiviral active, could be confirmed. Besides the controlled ACV release, the polymer fibers bind virus particles to their surface, significantly reducing the virus titer. Based on this tunable dual effect, the fiber scaffolds exhibit a promising antiviral drug delivery platform, which can overcome the limitations of current infection therapy associated with cornea transplantation.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3