Liposomes Under Shear: Structure, Dynamics, and Drug Delivery Applications

Author:

Karaz Selcan1ORCID,Senses Erkan1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering Koç University Istanbul 34450 Turkey

Abstract

The targeted delivery to specific locations while not causing damage to healthy tissues efficiently remains a challenge in drug delivery systems. Through addressing this issue, stimuli‐responsive materials have been under investigation. As one of the fundamental forces associated with blood flow, shear stress is taken as an advantage to design shear‐sensitive drug carriers. Although blood flow is modeled as laminar flow under normal conditions, in case of constrictions caused by endothelial shear stress, cardiovascular diseases, or angiogenesis due to tumor formation, local shear stress can dramatically increase. To date, shear‐sensitive materials have been investigated under two main categories: shear‐disaggregated and shear‐deformed nanoparticles based on their structural mechanism after exposure to high‐shear stress. Among them, liposomes are promising materials with their soft and deformable structure, high biocompatibility, controlled‐release properties, and sensitivity to shear stress. Herein, in this review, the effects of shear stress on liposomes in terms of their structural changes, flow regimes, rheological properties, and drug delivery applications are discussed. It is believed that this work provides a basis for designing more effective drug delivery systems considering the complexity of the human body.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Wiley

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3