Machine Learning‐Based Prediction of Immunomodulatory Properties of Polymers: Toward a Faster and Easier Development of Anti‐Inflammatory Biomaterials

Author:

Akkache Aghilas1,Clavier Lisa23,Mezhenskyi Oleh4,Andriienkova Kateryna4,Soubrié Thibaut4,Lavalle Philippe123,Vrana Nihal Engin1ORCID,Gribova Varvara23ORCID

Affiliation:

1. SPARTHA Medical 1 Rue Eugène Boeckel 67000 Strasbourg France

2. Biomaterials and Bioengineering Laboratory INSERM UMR 1121 1 rue Eugène Boeckel 67000 Strasbourg France

3. Faculté de Chirurgie Dentaire Centre de Soins Dentaires Université de Strasbourg 1 place de l’Hôpital 67000 Strasbourg France

4. Preste 242 boulevard Voltaire 75011 Paris France

Abstract

In biomaterials development, creating materials with desirable properties can be a time‐consuming and resource‐intensive process, often relying on serendipitous discoveries. A potential route to accelerate this process is to employ artificial intelligence methodologies such as machine learning (ML). Herein, the possibility to predict anti‐inflammatory properties of the polymers by using a simplified model of inflammation and a restrained dataset is explored. Cellular assays with 50 different polymers are conducted using the murine macrophage cell line RAW 264.7 as a model. These experiments generate a dataset which is used to develop a ML model based on Bayesian logistic regression. After conducting a Bayesian logistic regression analysis, two ML models, K‐nearest neighbors (KNN) and Naïve Bayes, are employed to predict anti‐inflammatory polymers properties. The study finds that the probability of a polymer having anti‐inflammatory properties is multiplied by three if it is a polycation, and that nitric oxide secretion is a good indicator in determining the anti‐inflammatory properties of a polymer, which in this work are defined by tumor necrosis factor alpha expression decrease. Overall, the study suggests that with appropriate dataset design, ML techniques can provide valuable information on functional polymer properties, enabling faster and more efficient biomaterial development.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3