Engineering Tough and Elastic Polyvinyl Alcohol‐Based Hydrogel with Antimicrobial Properties

Author:

Baidya Avijit1ORCID,Budiman Annabella1,Jain Saumya1,Oz Yavuz1ORCID,Annabi Nasim12ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering University of California Los Angeles Los Angeles California 90095 USA

2. Department of Bioengineering University of California Los Angeles Los Angeles California 90095 USA

Abstract

Hydrogels have been extensively used for tissue engineering applications due to their versatility in structure and physical properties, which can mimic native tissues. Although significant progress has been made toward designing hydrogels for soft tissue repair, engineering hydrogels that resemble load‐bearing tissues is still considered a great challenge due to their specific mechanophysical demands. Herein, microporous, tough, yet highly compressible poly(vinyl alcohol) (PVA)‐based hydrogels are reported for potential applications in repairing or replacing different load‐bearing tissues. The synergy of freeze‐thawing and the Hofmeister effect, which controlled the spatial arrangement and aggregation of polymer chains, facilitated the formation of microstructured frameworks with tunable porosity. While the maximum mechanical strength, toughness, and stretchability of the engineered hydrogel were ≈390 kPa, ≈388 kJ m−3, and ≈170%, respectively, Young's modulus based on compression testing wasfound to be in the range of ≈0.02–0.30 MPa, highlighting the all‐in‐one mechanically enriched nature of the hydrogel. Furthermore, the minimal swelling and degradation rate of the engineered hydrogel met the specific requirements for load‐bearing tissues. Finally, excellent antibacterial resistance as well as in vitro biocompatibility of the hydrogel demonstrates its potential for the replacement of load‐bearing tissues.

Funder

Foundation for the National Institutes of Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3