Federated learning based multi‐head attention framework for medical image classification

Author:

Firdaus Naima1ORCID,Raza Zahid1ORCID

Affiliation:

1. School of Computer and Systems Sciences Jawaharlal Nehru University New Delhi India

Abstract

AbstractIn this study, we propose a novel Federated Learning Based Multi‐Head Attention (FBMA) framework for image classification problems considering the Independent and Identically Distributed (IID) and Non‐Independent and Identically Distributed (Non‐IID) medical data. The FBMA architecture integrates FL principles with the Multi‐Head Attention mechanism, optimizing the model performance and ensuring privacy. Using Multi‐Head Attention, the FBMA framework allows the model to selectively focus on important regions of the image for feature extraction, and using FL, FBMA leverages decentralized medical institutions to facilitate collaborative model training while maintaining data privacy. Through rigorous experimentation on medical image datasets: MedMNIST Dataset, MedicalMNIST Dataset, and LC25000 Dataset, each partitioned into Non‐IID data distribution, the proposed FBMA framework exhibits high‐performance metrics. The results highlight the efficacy of our proposed FBMA framework, indicating its potential for real‐world applications where image classification demands both high accuracy and data privacy.

Publisher

Wiley

Reference51 articles.

1. XuJ WangF.Federated learning for healthcare informatics. CoRR.2019; abs/1911.06270.

2. HIPAA Regulations — A New Era of Medical-Record Privacy?

3. de laTorreL.A guide to the california consumer privacy act of 2018. Available at SSRN 3275571.2018.

4. Regulation (EU) 2016/679 of the European Parliament and of the council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data (general data protection regulation);European Parliament and Council of the European Union;Off J Eur Union,2016

5. KonečnýJ McMahanHB YuFX RichtárikP SureshAT BaconD.Federated learning: strategies for improving communication efficiency. CoRR.2016; abs/1610.05492.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3