Semi‐parametric generalized linear model for binomial data with varying cluster sizes

Author:

Qi Xinran1ORCID,Szabo Aniko2ORCID

Affiliation:

1. Department of Neurology and Neurological Sciences Stanford University Stanford California 94305 USA

2. Biostatistics, Institute for Health and Equity Medical College of Wisconsin Milwaukee Wisconsin 53226 USA

Abstract

The semi‐parametric generalized linear model (SPGLM) proposed by Rathouz and Gao assumes that the response is from a general exponential family with unspecified reference distribution and can be applied to model the distribution of binomial event‐count data with a constant cluster size. We extend SPGLM to model response distributions of binomial data with varying cluster sizes by assuming marginal compatibility. The proposed model combines a non‐parametric reference describing the within‐cluster dependence structure with a parametric density ratio characterizing the between‐group effect. It avoids making parametric assumptions about higher order dependence and is more parsimonious than non‐parametric models. We fit the SPGLM with an expectation–maximization Newton–Raphson algorithm to the boron acid mouse data set and compare estimates with existing methods.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3