Fault diagnosis for blast furnace ironmaking process based on randomized local fisher discriminant analysis

Author:

Zhou Jiawei1,Wu Ping123ORCID,Ye Hejun1,Song Yunpeng4,Wu Xianbao5,He Yuchen2ORCID,Pan Haipeng1

Affiliation:

1. School of Information Science and Engineering, Zhejiang Sci‐Tech University Hangzhou China

2. Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province Hangzhou China

3. Changshan Institute of Zhejiang Sci‐Tech University Quzhou China

4. Industry Development Center of Zhejiang Province Hangzhou China

5. Zhejiang Zhefeng New Material Co., Ltd. Quzhou China

Abstract

AbstractFault diagnosis plays a vital role in ensuring the operation safety of blast furnaces and improving the quality of molten iron in the ironmaking and steelmaking industry. The blast furnace ironmaking process (BFIP) is intrinsically nonlinear. To address the nonlinearity issue of BFIP, a novel fault diagnosis approach that combines the randomized method, local structure information, and Fisher discriminant analysis is proposed in this paper. Using a randomized feature map, the process data is first mapped onto a randomized explicit low‐dimensional feature space. Compared to kernel methods, explicit low‐dimensional random Fourier features considerably reduce the computational cost, particularly for real‐time fault diagnosis for a large training dataset or a large‐scale process. Additionally, the local structure information contained in the randomized low‐dimensional feature space is extracted. The fault diagnosis performance is improved through the exploration of the local structure of random Fourier features. Finally, the blast furnace iron‐marking process state is determined using Bayesian inference. Case studies on a real‐world BFIP are carried out to demonstrate the superior performance of the proposed method in comparison with other related methods.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3