Development of new correlation for the prediction of power number for closed clearance impellers using machine learning methods trained on literature data

Author:

Joshi Sumit S.1ORCID,Dalvi Vishwanath H.1ORCID,Vitankar Vivek S.2,Joshi Jyeshtharaj B.13,Joshi Aniruddha J.4

Affiliation:

1. Department of Chemical Engineering Institute of Chemical Technology Mumbai India

2. FluiDimensions—Engineering Simulations and Consulting Pune India

3. Homi Bhabha National Institute Mumbai India

4. RPDS Innovations Private Limited Pune India

Abstract

AbstractThe accurate estimation of the power number for closed clearance impellers holds significant importance in industries such as chemical, biochemical, paper and pulp, as well as paints, pigments, and polymers. Existing state‐of‐the‐art correlations for predicting power numbers, however, are inaccurate for impeller Reynolds number . In this study, we compiled a dataset of 1470 data points from 15 research articles in the open literature, covering five types of impellers: (i) anchor; (ii) gate; (iii) single helical ribbon; (iv) double helical ribbon; and (v) helical ribbon with screw. Six machine learning models, namely artificial neural networks (ANN), CatBoost regressor, extra tree regressor, support vector regressor, random forest, and XGBoost regressor, were developed and compared. The results revealed that ANN emerged as the most efficient model, demonstrating the highest testing R2 value of 0.99 and the lowest testing MAPE of 7.3%. Further, we used the ANN model to develop a novel set of process correlations to estimate impeller power numbers for the industrially important anchor and double helical ribbon impellers: which significantly outperform the existing state‐of‐the‐art correlations available in literature.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3