An optimization of Cs2TiBr6 perovskite solar cell using SCAPS‐1D simulation based on genetic algorithm

Author:

Liu Xiaoya1,Chen Zhengxin1,Wang Hairong2,Zhu Zhengrong3,Zhao Sirui1,Kong Lingchen1,Man Haitao1,Huang Kai1,Wu Jiang1,Ling Yang14

Affiliation:

1. College of Energy and Mechanical Engineering, Shanghai University of Electric Power Shanghai China

2. College of Electrical, Energy and Power Engineering, Yangzhou University Yangzhou China

3. Solid Waste Division Shanghai Environment Group Shanghai China

4. Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology Shanghai China

Abstract

AbstractA genetic algorithm (GA) was used in this simulation work and a well‐studied double perovskite structure was chosen to verify the feasibility of the algorithm. To pursue excellent efficiency and stability of the perovskite solar cell, the experimental and simulation data were summarized to determine the adjustable range of parameters for the simulated cell structure. The GA can help us to determine the best combination among a wide range of potential possibilities. The optimal solution was obtained by substituting the best combination data into SCAPS‐1D and the open circuit voltage (VOC) was 1.08 V, fill factor (FF) was 88.81%, short circuit current (JSC) was 37.06 mA/cm2, and the power conversion efficiency (PCE) was 35.54%. Compared to the initial simulation results, the efficiency was improved by 10 percentage points and the JSC increased by 12 mA/cm2. From these conclusions, it was clear that the GA provides a faster and more accurate way to find the optimal solution for perovskite solar cells.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3