Effect of ceria morphology on hydrogen production via methane steam reforming for membrane reformer

Author:

Baudh Anjali1,Garjola Meenakshi1,Sharma Rahul2,Sharma Sweta1,Upadhyay Rajesh Kumar1ORCID

Affiliation:

1. Department of Chemical Engineering and Technology IIT (BHU) Varanasi Varanasi India

2. GAIL (India) Limited Noida India

Abstract

AbstractHydrogen is a potential energy carrier in comparison to conventional fuels due to its high energy content. Methane is an attractive source for ‘on‐site’ production of hydrogen by using membrane reformer due to its low cost. However, such reformers are not well studied and high temperature operation of steam methane reforming (SMR) makes the integration with membrane separation difficult. Further, the main product of SMR is CO and H2 in which CO has an inhibition effect on the membrane separation process. Therefore, it is vital to synthesize a low temperature and low CO selective catalyst for a suitable integration with membrane reformer. Nickel‐based catalyst is widely used for SMR due to its low cost and high catalytic activity. CeO2 is a favoured support as it mobilizes the lattice oxygen and reduces the coke formation and CO selectivity. Though several studies are reported on CeO2 based support, the effect of CeO2 surface morphology is not studied for SMR. In the current work, Ni/CeO2 of different shapes (nanocube and nanorod) are synthesized. The complete characterization of the support was performed. The effect of support shape, calcination temperature, and reduction temperature on SMR activity is found at different operating temperatures. For each condition conversion, CO, CO2 selectivity, and hydrogen yield are calculated. The results show the CeO2 morphology has a considerable effect on conversion, CO selectivity, and hydrogen yield. It is found that ceria nanocube calcined at 550°C provides better performance at high temperature.

Funder

GAIL

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3