Machine‐learning‐based optimization framework to support recovery‐based design

Author:

Issa Omar1ORCID,Silva‐Lopez Rodrigo1,Baker Jack W.1ORCID,Burton Henry V.2ORCID

Affiliation:

1. Department of Civil & Environmental Engineering Stanford University California USA

2. Department of Civil & Environmental Engineering University of California Los Angeles California USA

Abstract

AbstractRecovery‐based design links building‐level engineering and broader community resilience objectives. However, the relationship between above‐code engineering improvements and recovery performance is highly nonlinear and varies on a building‐ and site‐specific basis, presenting a challenge to both individual owners and code developers. In addition, downtime simulations are computationally expensive and hinder exploration of the full design space. In this paper, we present an optimization framework to identify optimal above‐code design improvements to achieve building‐specific recovery objectives. We supplement the optimization with a workflow to develop surrogate models that (i) rapidly estimate recovery performance under a range of user‐defined improvements, and (ii) enable complex and informative optimization techniques that can be repeated for different stakeholder priorities. We explore the implementation of the framework using a case study office building, with a 50th percentile baseline functional recovery time of 155 days at the 475‐year ground‐motion return period. To optimally achieve a target recovery time of 21 days, we find that nonstructural component enhancements are required, and that increasing structural strength (through increase of the importance factor) can be detrimental. However, for less ambitious target recovery times, we find that the use of larger importance factors eliminates the need for nonstructural component improvements. Such results demonstrate that the relative efficacy of a given recovery‐based design strategy will depend strongly on the design criteria set by the user.

Funder

National Science Foundation

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference32 articles.

1. FEMA.FEMA P‐2082: NEHRP Recommended Seismic Provisions for New Buildings and Other Structures.Vol. II: Part 3 Resource Papers.FEMA.2020.

2. FEMA.FEMA P‐2090: Recommended Options for Improving the Built Environment for Post‐Earthquake Reoccupancy and Functional Recovery Time.National Institute of Standards and Technology (NIST).2021. doi:10.6028/NIST.SP.1254

3. MarD AherS.Affordable Resilience Using Rocking Walls and Foundation Dampers.Proceedings of the 12th National Conference in Earthquake Engineering.2022.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3