Multiphase lattice Boltzmann flux solver with conservative Allen‐Cahn model for modeling high‐density‐ratio flows

Author:

Chen Z.1,Sun Y. H.2

Affiliation:

1. Marine Numerical Experiment Center, State Key Laboratory of Ocean Engineering Shanghai Jiao Tong University Shanghai China

2. School of Naval Architecture, Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China

Abstract

AbstractIn this paper, the Allen‐Cahn‐Multiphase lattice Boltzmann flux solver (AC‐MLBFS) is proposed as a new and effective numerical simulation method for multiphase flows with high density ratios. The MLBFS resolves the macroscopic governing equations with the finite volume method and reconstructs numerical fluxes on the cell interface from local solutions to the lattice Boltzmann equation, which combines the advantages of conventional Navier–Stokes solvers and lattice Boltzmann methods for simulating incompressible multiphase flows while alleviating their limitations. Previous MLBFS‐based multiphase solvers performed poorly in mass conservation, which might be caused by the excessive numerical diffusion in the Cahn‐Hilliard (CH) model used as the interface tracking algorithm. To resolve this problem, the present method proposes using the conservative Allen‐Cahn (AC) model as the interfacial tracking algorithm, which can ease the numerical implementation by removing high order derivative terms and alleviate mass leakage by enforcing local mass conservation in the physical model. Numerical validations will be carried out through benchmark tests at high density ratios and in extreme conditions with large Reynolds or Weber numbers. Through these examples, the accuracy and robustness as well as the mass conservation characteristics of the proposed method are demonstrated.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3