Convolutional neural network and unmanned aerial vehicle‐based public safety framework for human life protection

Author:

Patel Nihar1,Vasani Nakul1,Gupta Rajesh1ORCID,Kumar Jadav Nilesh1ORCID,Tanwar Sudeep1ORCID,Alqahtani Fayez2,Tolba Amr3ORCID,Simona Raboaca Maria45

Affiliation:

1. Department of Computer Engineering Institute of Technology, Nirma University Ahmedabad Gujarat India

2. Software Engineering Department, College of Computer and Information Sciences King Saud University Riyadh Saudi Arabia

3. Computer Science Department Community College, King Saud University Riyadh Saudi Arabia

4. Doctoral School University Politehnica of Bucharest Bucharest Romania

5. The National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Rm. Râmnicu Vâlcea Romania

Abstract

SummaryIn this paper, we developed an object detection and identification framework to bolster public safety. Before developing the proposed framework, several existing frameworks were analyzed to bolster public safety. The other models were carefully observed for their strengths and weaknesses based on the machine learning and deep learning algorithms they operate on. All these were kept in mind during the development of the proposed model. The proposed framework consists of an unmanned aerial vehicle (UAV) utilized for data collection that constantly monitors and captures the images of the designated areas. A convolutional neural network (CNN) model is developed to recognize a threat and identifies various handheld objects, such as guns and knives, which facilitate criminals to commit crimes. The proposed CNN model comprises 16 layers with input, convolutional, dense, max‐pool, and flattened layers of different dimensions. For that, a benchmarked dataset, that is, small objects handled similarly to a weapon (SOHAs), a weapon detection dataset is used. It comprises six classes of 8945 images, with 5947 used for training, 1699 used for testing, and 849 used for validation. Once the CNN model accomplishes the object identification and classification, that is, the person is criminal or non‐criminal, the criminal is forwarded to various law enforcement agencies and non‐criminal data are again forwarded to the CNN model for improvising its accuracy rate. As a result, the proposed CNN model outperforms several pre‐trained models with an accuracy of 0.8352 and a validation accuracy of 0.7758. In addition, the proposed model gives a minimal loss of 0.83 with a validation loss of 0.97. The proposed framework decreases the burden on crime‐fighting agencies and increases the accuracy of crime detection. Additionally, it ensures fairness and operates at a meager computational cost compared to similar pre‐trained models.

Funder

King Saud University

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Networks and Communications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3