Computational modeling of Prandtl‐nanofluid flow using exponentially vertical surface in terms of chemical reaction

Author:

Biswas Rajib1,Falodun B. O.2,Islam Nazmul34,Ahmmed Sarder Firoz4,Mishra S. R.5,Afikuzzaman Mohammad3

Affiliation:

1. Department of Mathematics Bangladesh University Dhaka Bangladesh

2. Department of Computer Science/Mathematics, College of Natural and Applied Sciences Novena University Nigeria

3. UniSA STEM University of South Australia Mawson Lakes Australia

4. Mathematics Discipline Khulna University Khulna Bangladesh

5. Department of Mathematics Siksha ‘O’ Anusandhan Deemed to be University Bhubaneswar India

Abstract

AbstractCurrent study examined the magnetohydrodynamic (MHD) Prandtl nanofluid of a thermal double‐diffusive flow through an exponentially vertical surface in association with heat generation, and thermophoresis effect. The novelty of this study is due to the analysis of Prandtl nanofluid model with Soret mechanism and chemically responding fluids. This suggested model is beneficial since it can significantly advance the domains of thermal and industrial engineering. The fluid flow phenomenon is characterized by nonlinear coupled differential equations involving two or more independent variables. A suitable numerical technique is used to handle the set of governing equations along with a stability and convergence analysis. According to recent study, the fluid velocity increases since all the parameters are set to higher levels. For the various parametric values, isotherms and streamlines have been explored. This suggested model is beneficial since it can significantly advance the domains of thermal and industrial engineering. For instance, thermal radiation is crucial in designing sophisticated energy‐transformed systems that operate at high temperatures. On the other hand, the phenomenon of Soret is useful in separating isotopes in chemical engineering. An important findings of the current investigations can be treated as, radiative heat encourages fluid temperature distribution since it is the measure of the electromagnetic element radiates from the fluid particle that convert it into thermal radiation. These studies have several applications in the manufacturing and biomedical fields, petrochemical industries, automobiles, medical sciences, and various production processes in industries.

Publisher

Wiley

Subject

General Engineering,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3