SREM: Smart renewable energy management scheme with distributed learning and EV network

Author:

Huang Huakun1,Xue Sihui1ORCID,Zhao Lingjun2,Dai Dingrong1,Wang Weijia3,Wu Huijun4,Cao Zhou5

Affiliation:

1. School of Computer Science and Cyber Engineering Guangzhou University Guangzhou China

2. School of Software Engineering Sun Yat‐sen University Zhuhai China

3. School of Information Technology Deakin University Geelong Victoria Australia

4. School of Civil Engineering Guangzhou University Guangzhou China

5. China Construction Third Bureau First Engineering Co., Ltd. Hubei China

Abstract

In this article, aiming to develop the Green Internet of Vehicles (G‐IoV), we propose a smart energy management system that leverages the intelligence edge clients and the distributed electric vehicles (EVs). The system proposed in this article incorporates the benefits of both software, specifically in terms of the user interface, and hardware, specifically in terms of edge clients. In particular, this system integrates intelligence edge clients with an EV CAN bus network as an electronic control unit. By leveraging the intelligent edge clients recommendation system, EVs can make informed decisions on battery charging or discharging actions. As a result, a virtual‐power‐plant (VPP) can treat the EVs network as a vast intelligent energy storage facility, efficiently managing the battery energy of all distributed EVs connected to the platform and fully utilizing the electricity generated from renewable energy sources. We experimentally verify that using federal learning to train models in EV networks versus training models directly in EVs, using federal learning in EV networks yields better experimental results.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Guangzhou Municipal Science and Technology Project

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Subject

General Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3