Learning‐based containment control in the absence of leaders' information

Author:

Zhao Yong1,Fan Hanning1,Guan Sihai23ORCID

Affiliation:

1. School of Mechanical and Power Engineering, Henan Polytech University Jiaozuo China

2. College of Electronic and Information, Southwest Minzu University Chengdu China

3. Key Laboratory of Electronic and Information Engineering State Ethnic Affairs Commission Chengdu China

Abstract

AbstractThis article considers the containment control problem of continuous‐time dynamic agents without leaders' state information. The leaders have first‐ and second‐order dynamics, respectively, while first‐order dynamics always govern the followers. Each agent has inherent nonlinear dynamics and can only measure the output information of its neighbors. The output of each leader is expressed as the product of an unknown coefficient and a position‐like state, while the output of each follower is equal to its position‐like state. To stabilize the position‐like states of the followers to the convex hull spanned by leaders, the unknown coefficients are asymptotically tracked by leveraging reinforcement learning based on the inherent dynamics and the output information. Two distributed learning‐based containment protocols are proposed, respectively. It is proved that if the directed communication topology has a spanning forest and certain conditions in terms of the inherent nonlinear dynamics are satisfied, then the proposed controllers with proper control gains solve the containment control problem asymptotically under arbitrary initial states. An exciting conclusion is that the learning algorithms' convergence rate plays an important role in achieving containment control. Numerical simulations are performed to validate the effectiveness of the obtained theoretical results.

Publisher

Wiley

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3