Study on combustion and emission characteristics of a micro‐rotary cam internal combustion engine

Author:

Zhu Hua1,Yang Ming1ORCID,Hao He1,Chen Lu1

Affiliation:

1. Jiangxi University of Science and Technology, School of Mechanical and Electrical Engineering Ganzhou China

Abstract

AbstractIn this article, the construction principle of rotary engine and sliding vane internal combustion engine is carefully analyzed, and the concept of micro‐rotary cam internal combustion engine is proposed by integrating and innovating on them. Overall design, theoretical analysis, and model making of miniature rotary cam internal combustion engine and its supporting system. The effects of different air intake modes and different ignition advance angles on the combustion and emission characteristics of internal combustion engines were studied. Through the study of the flow field, combustion and emission characteristics of small rotating internal combustion engines, it is found that the intake form has a great influence on the cylinder smoothness of rotating internal combustion engines. The vortex formed by the end cover inlet air in the middle of the combustion chamber can fully mix the fuel and air in the cylinder, and the mixture is evenly distributed in the combustion chamber to effectively promote the spread of flame. Compared with the surrounding air intake structure, the heat release should be increased by 4.3%, and the total amount of HC and CO generated was 26.8% and 15.7% less, respectively. By studying the turbulent kinetic energy, combustion heat release, peak temperature and pressure in the cylinder, fuel consumption rate and emission characteristics of small rotary internal combustion engine, it is found that when the ignition advance angle of the small rotating internal combustion engine is 5°, the peak pressure in the cylinder is increased by 2.3% compared with other schemes, the fuel consumption rate is high, and the combustion is more complete. In addition, in terms of emission characteristics, the amount of CO and HC generated when the ignition advance angle is 5° are reduced by 35% and 35.3%, respectively.

Publisher

Wiley

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3