A digital microfluidic chip with programmable open system actuation and enhanced optical annealing with near‐infrared light

Author:

Lepard Sydney1,Spotts Isaac2,Brodie C. Harrison2ORCID,Leclerc Camille A.2,Eswar Rahul1,Li Huiyan3,Collier Christopher M.12ORCID

Affiliation:

1. Collier Research Group, School of Engineering The University of Guelph Guelph Ontario Canada

2. Collier Research Group, School of Engineering The University of British Columbia Kelowna British Columbia Canada

3. BioMed Innovation Lab, School of Engineering The University of Guelph Guelph Ontario Canada

Abstract

AbstractThis work investigates a digital microfluidic chip and presents an advancement to microfluidic optical annealing methods through the application of whispering gallery mode (WGM) with near infrared excitation. Establishing a microfluidic chip with point‐of‐care capabilities, including actuation and annealing, has proven to be important. Unfortunately, poor heat absorption due to the long optical penetration depth of near infrared light creates scaling limitations for applications in optical‐based microfluidics. Through the application of WGM, the interaction length between the droplet and light is increased beyond the droplet diameter to improve heating and optical absorption. This is supported by finite‐difference time‐domain electromagnetic simulations and experimental results showing a greatly improved temperature change. Such a system is implemented in an open system digital microfluidic chip, to facilitate annealing via side illumination of droplets. The open system digital microfluidic chip is programmable for droplet actuation. The fundamental experiment of preprogrammed actuation of microdroplets is demonstrated in a 36 electrode grid. The results of annealing and actuation show potential for implementation in point‐of‐care microfluidic devices.

Funder

Canada Foundation for Innovation

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3