EWM: An entropy‐based framework for estimating energy consumption of edge servers

Author:

Li Guangxu123ORCID,Li Junke124ORCID

Affiliation:

1. College of Computer Science and Technology Guizhou University Guiyang China

2. School of Information Engineering Suqian University Suqian Jiangsu China

3. State Key Laboratory of Public Big Data Guizhou University Guiyang China

4. School of Computer and Information Technology Qiannan Normal University for Nationalities Qiannan China

Abstract

AbstractIn mobile edge computing (MEC), accurately predicting and monitoring the energy consumption of edge servers is a key challenge in achieving green computing. The importance of solving this problem is that it can help optimize the energy usage in data centers and thus reduce the carbon emission of MEC. To this end, we propose an innovative entropy‐based power modeling framework called entropy weighted model (EWM). The EWM framework weights and combines classical prediction models by analyzing the major components of a server and selecting appropriate parameters. We validate the performance of EWM using real server power and performance counter data and compare it with other classical prediction models by Friedman test. The results show that EWM outperforms other classical prediction models in all test datasets. This result validates the significant advantages of our EWM framework in solving the critical problem of edge server power prediction, and provides an effective tool for achieving data center energy optimization and promoting green computing, resulting in a highly general and accurate prediction model.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guizhou Province

Publisher

Wiley

Subject

General Engineering,General Computer Science

Reference31 articles.

1. Synergy Research Group: Virginia Still Has More Hyperscale Data Center Capacity Than Either Europe or China[EB/OL].https://www.srgresearch.com/articles/virginia‐still‐has‐more‐hyperscale‐data‐center‐capacity‐than‐either‐europe‐or‐china

2. The cost of a cloud

3. A Survey on Edge and Edge-Cloud Computing Assisted Cyber-Physical Systems

4. CastellazziL MariaA BertoldiP.Trends in data centre energy consumption under the European Code of Conduct for data centre energy efficiency.2017. doi:10.2760/358256

5. RoyS RudraA VermaA.An energy complexity model for algorithms. ITCS 2013. Proceedings of the 2013 ACM Conference on Innovations in Theoretical Computer Science. 2013:283‐304. doi:10.1145/2422436.2422470

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3