Seismic behavior of a fully tempered insulating glass curtain wall system under various loading protocols

Author:

Ji Xiaodong1ORCID,Zhuang Yuncheng1ORCID,Lim Wanhui1,Qu Zhe2

Affiliation:

1. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry Department of Civil Engineering Tsinghua University Beijing China

2. Key Laboratory of Earthquake Engineering and Engineering Vibration Institute of Engineering Mechanics CEA, Sanhe Hebei China

Abstract

AbstractThis paper investigates the seismic behavior of a glass curtain wall system under various loading scenarios. Experimental set‐ups and approaches were developed to test full‐scale fully tempered (FT) insulating glass curtain wall systems subjected to three loading protocols: quasi‐static in‐plane loading, dynamic in‐plane loading, and dynamic coupled in‐plane and out‐of‐plane loading. A refined finite element (FE) model was developed to understand the behavior of the system. The average drift associated with glass cracking and fallout was found to be nearly identical for quasi‐static and dynamic in‐plane loading, indicating that in‐plane floor accelerations exerted marginal influence on the failure of the glass curtain walls. Bi‐directional loading led to an approximately 30% decrease in the glass fallout drift compared with in‐plane loading. This is because the out‐of‐plane drift placed an increased stress demand on the glass panel, as indicated by the FE analysis. Both the experimental tests and FE analysis revealed that the ASCE 7–16 formula, which is used to calculate the drift of contact between the glass and frame, is nonconservative as it does not consider the deformation of the surrounding frame and the friction between the gasket and the glass. The failure mechanism of the glass panel was caused by the stress concentrations at the diagonal corners due to glass‐to‐frame contact. The FE analysis indicated that the interactional effect among different glass units was negligible, and the glass panels exhibited a similar stress state regardless of their positions.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference39 articles.

1. Architectural Glass

2. Structural Use of Glass

3. Curved curtain wall for the extension of aspire academy Qatar;Naqash MT;MOJ Civ Eng,2017

4. Window spacers and edge seals in insulating glass units: A state-of-the-art review and future perspectives

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3