Distinct patterns of voxel‐ and connection‐based white matter hyperintensity distribution and associated factors in early‐onset and late‐onset Alzheimer's disease

Author:

Hong Hui12ORCID,Chen Yutong2,Liu Weiran2,Luo Xiao1,Zhang Minming1,

Affiliation:

1. Department of Radiology The Second Affiliated Hospital of Zhejiang University School of Medicine Hangzhou China

2. Department of Clinical Neurosciences University of Cambridge Cambridge UK

Abstract

AbstractIntroductionThe distribution of voxel‐ and connection‐based white matter hyperintensity (WMH) patterns in early‐onset Alzheimer's disease (EOAD) and late‐onset Alzheimer's disease (LOAD), as well as factors associated with these patterns, remain unclear.MethodWe analyzed the WMH distribution patterns in EOAD and LOAD at the voxel and connection levels, each compared with their age‐matched cognitively unimpaired participants. Linear regression assessed the independent effects of amyloid and vascular risk factors on WMH distribution patterns in both groups.ResultsPatients with EOAD showed increased WMH burden in the posterior region at the voxel level, and in occipital region tracts and visual network at the connection level, compared to controls. LOAD exhibited extensive involvement across various brain areas in both levels. Amyloid accumulation was associated WMH distribution in the early‐onset group, whereas the late‐onset group demonstrated associations with both amyloid and vascular risk factors.DiscussionEOAD showed posterior‐focused WMH distribution pattern, whereas LOAD was with a wider distribution. Amyloid accumulation was associated with connection‐based WMH patterns in both early‐onset and late‐onset groups, with additional independent effects of vascular risk factors in late‐onset group.Highlights Both early‐onset Alzheimer's disease (EOAD) and late‐onset AD (LOAD) showed increased white matter hyperintensity (WMH) volume compared with their age‐matched cognitively unimpaired participants. EOAD and LOAD exhibited distinct patterns of WMH distribution, with EOAD showing a posterior‐focused pattern and LOAD displaying a wider distribution across both voxel‐ and connection‐based levels. In both EOAD and LOAD, amyloid accumulation was associated with connection‐based WMH patterns, with additional independent effects of vascular risk factors observed in LOAD.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3