Scale‐up fabrication and advanced properties of recycled polyethylene terephthalate aerogels from plastic waste

Author:

Goh Xue Yang12ORCID,Deng Xinying2ORCID,Teo Wern Sze2,Ong Ren Hong1,Nguyen Luon Tan1,Bai Tianliang1,Duong Hai M.13ORCID

Affiliation:

1. Department of Mechanical Engineering National University of Singapore Singapore Singapore

2. Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR) Singapore Singapore

3. University of Cuu Long Vinh Long Vietnam

Abstract

AbstractTraditional fabrication methods of aerogels are time consuming, toxic, and difficult to implement, making the production of aerogels expensive and severely limits widespread adoption. Nonwoven technology is introduced to prepare fibers that can be used to create polymer‐based aerogel. With its introduction, it allows the continuous flow of fine fibers and eliminates the bottlenecking fiber preparation phase of the fabrication process. Using recycled polyethylene terephthalate (rPET) fibers and polyvinyl alcohol, two types of rPET aerogels are successfully fabricated, namely the lab‐scale and the large‐scale aerogels, to investigate the effectiveness of the nonwoven process line for the fiber preparation processing step. Fibers prepared manually (lab‐scale aerogels) and with the aid of a fiber preparation production line (large‐scale aerogels) are characterized and compared. Both lab‐scale and large‐scale aerogels exhibited the required specifications of low densities (12.6–45.9 and 13.2–43.7 mg/cm3, respectively) and high porosity (99.1%–96.7% and 99.0%–96.8%, respectively). Their thermal conductivity (23.4–34.0 and 23.2–31.9 mW/m⋅K, respectively) and compressive modulus (4.74–21.91 and 4.53–22.29 kPa, respectively) were also relatively similar. The advantage of scaled preparation of fibers for aerogel manufacturing includes higher throughputs (the line can produce up to 60 kg/h), improved consistency for defibrillation, homogenous fiber blending, and accurate replication of laboratory‐made aerogel properties. This demonstrates the viability of using nonwoven technology to scale for continuous production to bring down the production cost.Highlights Scale up production of aerogels using nonwoven technology Improving preparation process of aerogels through homogenous fiber blending Preparation rate of up to 60 kg/h Developed high porosity aerogels up to 99% Good thermal insulation of 23.2–31.9 mW/m⋅K

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3