Integration and segregation manifolds in the brain ensure cognitive flexibility during tasks and rest

Author:

Capouskova Katerina1ORCID,Zamora‐López Gorka1,Kringelbach Morten L.234ORCID,Deco Gustavo15

Affiliation:

1. Center for Brain and Cognition, Computational Neuroscience Group, DTIC Universitat Pompeu Fabra Barcelona Spain

2. Department of Psychiatry University of Oxford Oxford United Kingdom

3. Center for Music in the Brain, Department of Clinical Medicine Aarhus University Aarhus Denmark

4. Centre for Eudaimonia and Human Flourishing, Linacre College University of Oxford Oxford United Kingdom

5. Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona Spain

Abstract

AbstractAdapting to a constantly changing environment requires the human brain to flexibly switch among many demanding cognitive tasks, processing both specialized and integrated information associated with the activity in functional networks over time. In this study, we investigated the nature of the temporal alternation between segregated and integrated states in the brain during rest and six cognitive tasks using functional MRI. We employed a deep autoencoder to explore the 2D latent space associated with the segregated and integrated states. Our results show that the integrated state occupies less space in the latent space manifold compared to the segregated states. Moreover, the integrated state is characterized by lower entropy of occupancy than the segregated state, suggesting that integration plays a consolidating role, while segregation may serve as cognitive expertness. Comparing rest and the tasks, we found that rest exhibits higher entropy of occupancy, indicating a more random wandering of the mind compared to the expected focus during task performance. Our study demonstrates that both transient, short‐lived integrated and segregated states are present during rest and task performance, flexibly switching between them, with integration serving as information compression and segregation related to information specialization.

Funder

Danmarks Grundforskningsfond

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3