Analysis of particle size distribution of organic carbon for landfill leachate—implications for sustainable treatment

Author:

Doğruel Serdar1ORCID,Kaya Beste1ORCID,Soylu Dilşad1ORCID,Çokgör Emine1ORCID,Baran Aydın2,Sözen Seval13ORCID,Orhon Derin4ORCID

Affiliation:

1. Faculty of Civil Engineering, Environmental Engineering Department Istanbul Technical University Istanbul Turkey

2. ISTAC Inc. Istanbul Environmental Management Industry Trade Company Istanbul Turkey

3. ENVIS Energy and Environmental Systems Research and Development Ltd ITU ARI Technocity Istanbul Turkey

4. The Science Academy Istanbul Turkey

Abstract

AbstractBACKGROUNDLandfill leachate has a complex composition requiring experimental support to formulate a sustainable treatment strategy. This study utilized the particle size distribution (PSD) of the chemical oxygen demand (COD) content to assess the profile of biodegradable and inert COD fractions; it also emphasized the functions and benefits of ultrafiltration and nanofiltration modules coupled to an activated sludge process. The evaluation profited from the field data of a landfill site in Istanbul, where the leachate was actually treated in a membrane bioreactor (MBR) plant.RESULTSCOD and total nitrogen levels fluctuated between 10 100–31 200 mg L−1 and 1150–2800 mg L−1, respectively. PSD analysis for COD, conducted at two extremes, displayed similar results, where the majority of the COD was observed to accumulate at the low extremity of the particle size, 70–72% below 2 nm. Therefore, direct membrane filtration of leachate yielded low COD removals that were limited to 9% with ultrafiltration and to 31–35% with nanofiltration. COD fractionation indicated a ratio of 5% for the inert COD in leachate. The permeate COD of ultrafiltration in the existing plant was 2000 mg L−1, much higher than the inert fraction ratio, which was further reduced to 266 mg L−1 by nanofiltration.CONCLUSIONPSD analysis was an integral complement of respirometry for establishing the size‐biodegradation relationships of different COD fractions. It located the majority of soluble COD fractions below 0.55 nm, thus implying the necessity of a biological process. PSD also identified the generation of soluble residual metabolic products, indicating that residual COD escaping treatment would be equally significant to the removal potential of the biodegradable substrate. © 2023 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).

Publisher

Wiley

Subject

Inorganic Chemistry,Organic Chemistry,Pollution,Waste Management and Disposal,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3