Selective pivot logratio coordinates for partial least squares discriminant analysis modelling with applications in metabolomics

Author:

Štefelová Nikola1ORCID,de Sousa Julie234ORCID,Hron Karel2ORCID,Palarea‐Albaladejo Javier5ORCID,Dobešová Dana34ORCID,Kvasnička Aleš34ORCID,Friedecký David34ORCID

Affiliation:

1. Czech Advanced Technology and Research Institute Palacký University Olomouc Olomouc Czech Republic

2. Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science Palacký University Olomouc Olomouc Czech Republic

3. Laboratory for Inherited Metabolic Disorders, Department of Clinical Biochemistry University Hospital Olomouc Olomouc Czech Republic

4. Faculty of Medicine and Dentistry Palacký University Olomouc Olomouc Czech Republic

5. Department of Computer Science, Applied Mathematics and Statistics University of Girona Girona Spain

Abstract

Data resulting from high‐throughput biological experiments are frequently of relative nature. This implies that the most relevant information is on the shape of the data distribution over the biological features more than on the size of the measurements themselves. One well‐established way to acknowledge this in statistical processing is through logratio analysis. In the current work, we introduce selective pivot logratio coordinates as a new type of orthonormal logratio coordinate representation for high‐dimensional relative (a.k.a. compositional) data. This proposal is aimed to enhance the identification of biomarkers in the context of binary classification problems, which is a common setting of scientific studies in the field. These logratio coordinates are constructed so that the pivot coordinate representing a certain compositional part aggregates all pairwise logratios of that part to the rest but, unlike in the ordinary formulation, excludes those deviating from the main pattern. This novel coordinate system is embedded within a partial least squares discriminant analysis (PLS‐DA) model for its practical application. Based on both synthetic and real‐world metabolomic data sets, we demonstrate the enhanced performance of the novel approach when compared with other methods used in the area.

Funder

Ministerstvo Zdravotnictví Ceské Republiky

Ministerio de Ciencia e Innovación

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference42 articles.

1. The Statistical Analysis of Compositional Data

2. Controlling the false discovery rate: A practical and powerful approach to multiple testing;Benjamini Y.;Journal of the Royal Statistical Society Series B,1995

3. Synthesis and Biosynthetic Trafficking of Membrane Lipids

4. Center for Computational Mass Spectrometry(2023).MassIVE dataset MSV000091311.https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?accession=MSV000091311 Accessed on March 17 2023.

5. Lipidomic and metabolomic analysis reveals changes in biochemical pathways for non-small cell lung cancer tissues

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3