New remote method to systematically extract bedrock channel width of small catchments across large spatial scales using high‐resolution digital elevation models

Author:

Eidmann Johanna Sophie1ORCID,Gallen Sean1ORCID

Affiliation:

1. Geosciences Department Colorado State University Fort Collins Colorado USA

Abstract

AbstractBedrock river width is an essential geometric parameter relevant to understanding flood hazards and gauging station rating curves, and is critical to stream power incision models and many other landscape evolution models. Obtaining bedrock river width measurements, however, typically requires extensive field campaigns that take place in rugged and steep topography where river access is often physically challenging. Although prior work has turned to measuring channel width from satellite imagery, these data present a snapshot in time, are typically limited to rivers ≥ 10–30 m wide due to the image resolution, and are physically restricted to areas devoid of vegetation. For these reasons, we are generally data limited, and the factors impacting bedrock channel width remain poorly understood. Due to these limitations, researchers often turn to assumptions of width‐scaling relationships with drainage area or discharge to estimate bedrock channel width. Here we present a new method of obtaining bedrock channel width at a desired river discharge through the incorporation of a high‐resolution bare‐earth digital elevation model (DEM) using MATLAB Topotoolbox and the HEC‐RAS river analysis system. We validate this method by comparing modeled results to US Geological Survey (USGS) field measurements at existing gauging stations, as well as field channel measurements. We show that this method can capture general characteristics of discharge rating curves and predict field‐measured channel widths within uncertainty. As high‐resolution DEMs become more available across the United States through the USGS three‐dimensional elevation program (3DEP), the future utility of this method is notable. Through developing and validating a streamlined, open‐source, and freely available workflow of channel width extraction, we hope this method can be applied to future research to improve the quantity of channel width measurements and improve our understanding of bedrock channels.

Funder

Geological Society of America

National Science Foundation

Warner College of Natural Resources, Colorado State University

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

Reference59 articles.

1. Lithologic and tectonic controls on bedrock channel form at the northwest Himalayan front

2. Hydro‐Geomorphic Metrics for High Resolution Fluvial Landscape Analysis

3. Brunner G.W.(2021)HEC‐RAS River Analysis System 2D Modeling User's Manual Version 6.0: USACE 1–251 p.

4. Climate of Puerto Rico and the U.S. Virgin Islands: Department of Commerce;Calvesbert R.J.;Climatography of the States,1970

5. Discharge estimation combining flow routing and occasional measurements of velocity

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3